
 

 
  

Comparing Hierarchical Bayes 

and Latent Class Choice: 
Practical Issues for Sparse Data Sets 

 

Choice-based Conjoint is the most often used method of conjoint analysis among today’s practitioners.  In 

commercial studies, practitioners frequently find it necessary to design complex choice experiments in 

order to accurately reflect the marketplace in which the client’s product resides.  The purpose of this paper 

is to compare the performance of several HB models and LCC models in the practical context of sparse 

real-world data sets using commercially available software. The author finds that HB and LCC perform 

similarly and well, both in the default and more advanced forms (HB with adjusted priors and LCC with 

Cfactors).  LCC may estimate parameters with slightly less bias and HB may capture more heterogeneity.  

Sample size may have more potential to improve model performance than using advanced forms of either 

HB or LCC. 
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Comparing Hierarchical 

Bayes and Latent Class 

Choice: 
Practical Issues for Sparse Data Sets 

Introduction 
Choice-based Conjoint is the most often used method of conjoint analysis among today’s practitioners.  

In commercial studies, practitioners frequently find it necessary to design complex choice experiments 

in order to accurately reflect the marketplace in which the client’s product resides.  Studies with large 

numbers of attributes and/or heavily nested designs are common.  However, the number of tasks 

available for an individual respondent is limited not only by respondent fatigue but also project 

budgets.  Estimating a fairly large number of parameters with a minimum number of choice tasks per 

respondent can, and in practice often does, create a sparse data set. 

Disaggregate choice utility estimation is typically done using Hierarchical Bayes (HB), even with 

sparse data sets.  Jon Pinell and Lisa Fridley (2001) have shown that HB performance can degrade 

when applied to some partial profile designs.  Bryan Orme (2003) has shown that HB performance with 

sparse data sets can be improved by adjusting the priors.   

 

Latent Class Choice Models (LCC) are an alternative to HB that, for sparse data sets, may offer the 

practitioner potentially significant managerial as well as statistical advantages: 

• More managerial insight: 

o Powerful market segmentation 

o Identification of insignificant attributes and/or levels 

o Identification of class independent attributes 

• More parsimonious; less overfitting in the sense that statistically insignificant parameters can 

be easily identified and omitted 

• MAEs and hit rates equal or nearly equal to that of HB 
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Further, Andrews, et al. (2002) raise the possibility that LCC models may capture more respondent 

heterogeneity than HB models given sufficiently spare data at the respondent level. 

However, in commercial practice, LCC may have some limitations: 

• Computation time and computer capacity 

• Real-time to final results (despite some claims to the contrary, LCC models can be both 

computationally and real-time intensive) 

• Required expertise 

Objectives 
The purpose of this paper is to compare the performance of HB models and LCC models in the 

practical context of sparse real-world data sets using commercially available software.  Of particular 

interest is whether or not LCC models capture more heterogeneity than HB models with these data sets. 

The software used for this analysis was Sawtooth Software’s CBC/HB Version 4.6.4 (2005) and 

Statistical Innovation’s Latent Gold Choice 4.5 (Vermunt and Magidson, 2005). 

Study Design 
Using three commercial data sets, model performance for utilities based on versions of HB and LCC 

will be compared.  One data set will be based on a partial profile choice design.  Another data set will 

be based on a heavily nested attribute-specific design. 

Utilities will be estimated using the following techniques: 

• Default HB - Sawtooth’s HB module with default settings 

• MAE Adjusted Priors HB - Sawtooth’s HB module with prior variance and prior degrees of 

freedom of covariance matrix tuned to optimize holdout MAE 

• Hit Rate Adjusted Priors HB - Sawtooth’s HB module with prior variance and prior degrees 

of freedom of covariance matrix tuned to optimize holdout hit rate 

• Default LCC- Statistical Innovation’s Latent Gold Choice 

• CFactor LCC - Statistical Innovation’s Latent Gold Choice with one continuous factors 

• Aggregate Logit Model - Estimated within Sawtooth’s SMRT module 

 

Note: While the utilities for default HB were estimated by simply running the choice data through 

Sawtooth’s HB program, the default LCC estimation routine included various manual 

adjustments to the model based on output diagnostics, e.g., the omission of all statistically 

insignificant parameters, designating certain attributes as class independent, merging attribute 

effects across selected classes, constraining certain class parameters to zero, etc.  Thus, the 

amount of effort and expertise for the two “default” approaches differs substantially. 

Adjusted Priors HB is HB with prior variance and degrees of freedom of the covariance matrix adjusted 

either up or down from the default.  Adjusting the priors has the effect of either increasing or 

decreasing the influence of the upper model over the lower or subject-level models.  With sparse data 

sets, it has been shown (Orme, 2003) that increasing the weight of the upper model improves model 

performance.  A grid search is undertaken to find the optimal combination of prior variance and 

degrees of freedom weights to input as priors.  Optimal is defined to be either minimizing holdout 

MAE or maximizing hit rate. 

Statistical Innovation’s Latent Gold Choice program allows the user to introduce one or more 

continuous factors (Cfactors) to overlay on parameter estimates (Magidson and Vermunt, 2007).  
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Cfactors have the effect of distributing heterogeneity continuously across respondents.  A Cfactor on 

which only the intercept loads, for example, creates a unique random intercept for each respondent.  

For the models reported here, one Cfactor was used. 

Aggregate Choice Model is defined to be the choice model estimated when all respondents are pooled 

to estimate one set of parameters.  For this paper, the aggregate choice model was estimated using 

Sawtooth Software’s SMRT program.  No additional parameters, such as interaction effects or cross 

effects, were included in the aggregate model.  The purpose of the aggregate model was not to build the 

best aggregate model possible but to be a “worst case” reference point. 

Models were compared using these diagnostics: 

 

• Tuned MAEs 

• Disaggregate MAEs-fixed tasks 

• Disaggregate MAEs-random tasks 

• Hit Rates-fixed tasks 

• Hit Rates-random tasks 

• Average Holdout Variance Ratio-Variance per alternative averaged across holdout tasks; 

actual divided by predicted 

Fixed tasks refer to holdout tasks.  Each of the three data sets had at least one holdout task which was 

not used in the estimation of the utilities.  Random tasks are the choice tasks that were used in the 

estimation of utilities.  It was the case for all three data sets that the random tasks varied across 

respondents.  All of the data collected in the three data sets reported here were collected online, using 

Sawtooth Software’s SSI Web software.  The fixed tasks did not vary across respondents. 

MAEs 
Mean Absolute Error (MAE) is an aggregate measure of how well a model predicts choices.  As 

illustrated in Table 1 below, MAE is calculated as the absolute difference between actual choice task 

alternative share and predicted share, averaged across all alternatives. 

Table 1. 

 Raw Choice Predicted Delta 

Alt #1 20% 33% 13% 

Alt #2 30% 33% 3% 

Alt #3 50% 33% 17% 

Sum 

of 

Errors 

  33% 

MAE   11% 

 

Disaggregate MAEs is a disaggregate measure of model performance.  The calculation is similar to that 

of MAE except the calculation is done at the respondent level rather than aggregate. 
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Table 2. 

Resp#1 Raw Choice Predicted Delta 

Alt #1 0 33% 33% 

Alt #2 0 33% 33% 

Alt #3 1 33% 67% 

Sum of 

Errors 

  133% 

MAE   44% 

 

Exponential tuning is an aggregate method of empirically adjusting for the net effect of scale factors 

from within the simulator.   With exponential tuning, all utilities are multiplied by a constant.  

Constants less than 1 flatten simulated preference shares and constants greater than 1 heighten 

simulated preference share differences.  The constant is adjusted to minimize MAEs of holdout tasks. 

Hit Rates 
Hit rates are defined to be the percentage of times the alternative in a task (fixed or random) with the 

largest predicted purchase probability is the alternative selected by the respondent. 

Average Holdout Variance Ratio 
Average Holdout Variance Ratio is defined to be the average variance across the population for each 

alternative in the holdout task(s) divided by the average variance of the predicted choices.  These 

average variances are calculated by first calculating the variance across the population for each 

alternative in the holdout task(s).  These alternative-specific variances are then averaged (see Table 3 

below). 

Table 3. 

 Actual Predicted 

A 33 45 

B 28 38 

C 35 50 

AHV 32 44 

AHVR 0.73 

 

The purpose of this diagnostic is to measure captured heterogeneity.  The goal of any predictive model 

is not to manufacture a large amount of variance.  The goal of the model is to reflect and replicate the 

true variance from the population.  If the model is working well, that is, if the model is capturing 

heterogeneity, the average holdout variance ratio should be near 1.   
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Of the four model diagnostic measures, MAE, DMAE, hit rate and AHVR, all but MAE will reflect 

captured heterogeneity to some degree. 

Data Sets 
Data set # 1 is from the biotech industry and is B2B: 

• 634 respondents 

• Assumed heterogeneous: 

o All scientists who analyze organic materials 

o Variety of analytic tools used 

o Variety of research areas of interest (pharma, environ, etc.) 

o Variety of company types (research lab, QC, contract, etc.) 

o Purchasing authority/non-authority 

o Large budgets/small (±$100,000) 

• 9 attributes, 34 levels, full profile, no prohibitions or nesting 

• 8 choice tasks per respondent; 3 alternatives per task; 9 attributes per alternative 

Data set # 2 is from the consumer electronics category and is B2C: 

• 1,231 respondents 

• Assumed heterogeneous (study purpose was segmentation): 

o Broad consumer profile: 

▪ 16-64 years of age 

▪ $45,000 + 

▪ Own or lease a car 

• 27 attributes, 69 levels, attribute-specific design 

• 12 choice tasks per respondent; 6 alternatives per task; up to 12 attributes per alternative 

Data set # 3 is also from the consumer electronics category and is B2C: 

• 301 respondents 

• Assumed heterogeneous: 

o 28-54 years of age 

o White collar, professional, educator, business owner 

o Work on a laptop 

• Income $80,000 or more 

• 15 attributes, 45 levels, partial profile design 

• 12 choice tasks per respondent; 3 alternatives per task; 7 attributes per alternative 

 

To characterize these data sets: 

• Data set # 1 is not sparse 

• Data set # 2 is sparse with a large sample 

• Data set # 3 is sparse with a small sample 
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Results 
Overall, all HB models and all LCC models performed similarly and well.  Referring to Table 4., all 

disaggregate models outperformed the aggregate model, with the exception of default HB, data set # 3 

and the MAE measure.  Recall data set # 3 was the most “sparse” in the sense that there were are large 

number of attribute and levels, the design was partial profile and sample size was relatively small.  Also 

recall that Pinnell and Fridley (2001) got a similar result for some partial profile designs. 

All disaggregate models had excellent MAEs and acceptable hit rates.  From a practical perspective, if 

a practitioner estimated any one of these disaggregate models, including default HB, and saw these 

MAEs and hit rates, he/she would likely be pleased. 

Overall, the two LCC models had superior MAEs and two of the HB models (default and hit rate-tuned 

priors HB) had superior hit rates.  This may indicate that LCC parameter estimates have less bias and 

HB may capture more heterogeneity. 

Also note that tuning the priors to MAEs and tuning to hit rates sometimes yielded different results.  In 

both data sets # 1 and # 2, hit rate-tuned HB performed better than MAE-tuned HB.  MAEs for the two 

techniques were similar but hit rates were substantially better for hit rate-tuned HB.  In the third data 

set, the priors were the same for the two approaches. 

Sample size appears to have a significant impact on model performance, particularly hit rate, a measure 

of captured heterogeneity.  Data set # 2 had a sample size of 1,231.  Hit rates for all disaggregate 

models were significantly higher than for the other two data sets.  Further, DMAEs were substantially 

lower and AHVRs were noticeably closer to 1 (Table 5). 

Finally, LCC models, while demonstrating comparable performance to the HB models, did so 

occasionally with much more parsimony.  The Cfactor LCC model for data set # 2 used only 8 of the 

27 attributes.  For data set # 3, the most sparse of the three data sets, the LCC models used 13 of the 15 

total attributes. 

Table 4. 

  

Aggr 

HB 

Defa

ult 

HB 

Adjust

ed 

Priors 

HB 

(MAE) 

Adjust

ed 

Priors 

HB (Hit 

Rate) 

Defaul

t LC 

Cfactor 

LC 

Data 

Set 

#1 

MAE tuned 2.53 2.44 1.98 2.19 1.88 1.75 

Hit Rate-Fixed Tasks 53.9% 64.0% 55.8% 65.0% 60.1% 65.0% 

Attributes/levels 9/34 9/34 9/34 9/34 9/34 9/34 

Data 

Set 

#2 

MAE tuned 1.30 0.91 0.79 0.86 0.61 0.82 

Hit Rate-Fixed Task 32.4% 75.7% 69.1% 76.9% 68.9% 73.0% 

Attributes/levels 27/69 27/69 27/69 27/69 16/47 8/28 

Data 

Set 

#3 

MAE tuned 1.52 2.09 0.95 0.95 0.62 0.22 

Hit Rate-Fixed Task 50.8% 61.8% 65.1% 65.1% 62.5% 62.8% 

Attributes/levels 15/45 15/45 15/45 15/45 13/40 13/40 
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Table 5 below lists hit rates, DMAEs and Average Holdout Variance Ratios; three measures of 

captured heterogeneity.  For all three data sets, both default HB and hit rate-tuned HB capture more 

heterogeneity than either LCC model, relative to the three measures listed, with the exception of default 

HB, hit rate and data set # 3.  

Table 5. 

  

Aggr 

HB 

Default 

HB 

Adjusted 

Priors 

HB 

(MAE) 

Adjusted 

Priors 

HB (Hit 

Rate) 

Default 

LC 

Cfactor 

LC 

Data 

Set 

#1 

Hit Rate-Fixed 

Tasks 
53.9% 64.0% 55.8% 65.0% 60.1% 65.0% 

DMAE- 

Fixed Task 
29.07 19.03 27.03 19.58 25.51 22.82 

Variances Ratio n/a 1.38 4.11 1.43 2.54 1.56 

Data 

Set 

#2 

Hit Rate-Fixed 

Task 
32.4% 75.7% 69.1% 76.9% 68.9% 73.0% 

DMAE- 

Fixed Tasks 
21.70 7.26 13.70 7.34 12.45 14.29 

Variances Ratio n/a 1.03 1.15 1.03 1.02 1.03 

Data 

Set 

#3 

Hit Rate-Fixed 

Task 
50.8% 61.8% 65.1% 65.1% 62.5% 62.8% 

DMAE- 

Fixed Tasks 
33.35 20.49 21.84 21.84 27.02 26.17 

Variances Ratio n/a 1.03 1.09 1.09 1.81 1.58 

 

Table 6 compares hit rates for holdout tasks and hit rates for random tasks.  Random task hit rates for 

the HB models approach 100% and are dramatically higher than holdout task hit rates.  Random task 

hit rates for the LCC models are comparable to holdout task hit rates. 

Table 7 compares DMAEs for holdout tasks and DMAEs for random tasks.  Similarly to Table 6 data, 

random task DMAEs for the HB models are dramatically lower than holdout task DMAEs.  Random 

task DMAEs for the LCC models are comparable to holdout task DMAEs.  

For data set # 1, the LCC models used all available attributes.  However, three attributes were class 

independent and three others had one or more class parameters dropped.  For data set # 3, the LCC 

models used 13 of 15 available attributes.  Additionally, one attribute was class independent and one 

class parameter was omitted. 

Given the dramatic improvement in hit rate and DMAE for the HB random task measures relative to 

holdout task measures and the relative parsimony of the LCC models, it appears that HB may overfit 

the data. 
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Table 6. 

Hit 

Rates 

 

Aggr 

HB 

Default 

HB 

Adjusted 

Priors 

HB 

(MAE) 

Adjusted 

Priors 

HB (Hit 

Rate) 

Default 

LC 

Cfactor 

LC 

Data 

Set #1 

Hit Rate-Fixed 

Tasks 
53.9% 64.0% 55.8% 65.0% 60.1% 65.0% 

Hit Rate-

Random Task 
47.3% 99.3% 71.9% 98.2% 61.0% 69.4% 

Attributes/levels 9/34 9/34 9/34 9/34 9/34 9/34 

Data 

Set #2 

Hit Rate-Fixed 

Task 
32.4% 75.7% 69.1% 76.9% 68.9% 73.0% 

Hit Rate-

Random Tasks 
35.9% 96.3% 80.1% 94.6% 74.4% 78.1% 

Attributes/levels 27/69 27/69 27/69 27/69 16/47 8/28 

Data 

Set #3 

Hit Rate-Fixed 

Task 
50.8% 61.8% 65.1% 65.1% 62.5% 62.8% 

Hit Rate-

Random Tasks 
45.7% 98.6% 88.7% 88.7% 55.2% 61.2% 

Attributes/levels 15/45 15/45 15/45 15/45 13/40 13/40 
 

Table 7. 

DMAE

s 

 

Agg

r HB 

Defaul

t HB 

Adjuste

d Priors 

HB 

(MAE) 

Adjuste

d Priors 

HB (Hit 

Rate) 

Defaul

t LC 

Cfacto

r LC 

Data Set 

#1 

DMAE- 

Fixed Tasks 
29.07 19.03 27.03 19.58 25.51 22.82 

DMAE-Random 

Tasks 
32.75 1.78 25.86 4.89 26.72 22.30 

Attributes/level

s 
9/34 9/34 9/34 9/34 9/34 9/34 

Data Set 

#2 

DMAE- 

Fixed Task 
21.70 7.26 13.70 7.34 12.45 14.29 

DMAE-Random 

Tasks 
21.49 1.89 11.81 2.85 10.77 9.15 

Attributes/level

s 
27/69 27/69 27/69 27/69 16/47 8/28 

Data Set 

#3 

DMAE- 

Fixed Task 
33.35 20.49 21.84 21.84 27.02 26.17 

DMAE-Random 

Tasks 
33.51 3.23 14.45 14.45 28.17 25.79 

Attributes/level

s 
15/45 15/45 15/45 15/45 13/40 13/40 
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Conclusions 
Default HB is by far the easiest of the examined models to build yet it performed nearly as well as 

more sophisticated models even though two of the three data sets used in the analysis were quite sparse. 

HB and LCC perform similarly and well, both in the default and more advanced forms (HB with 

adjusted priors and LCC with Cfactors).   

At least for these sparse data sets, LCC may estimate parameters with slightly less bias and HB may 

capture more heterogeneity. 

Sample size may have more potential to improve model performance than using advanced forms of 

either HB or LCC.  

Tuning HB priors to hit rates, rather than MAEs, appears to be the more productive approach. 

Discussion 
HB and LCC may be reaching the limit of their potential.  Both models, despite sophisticated 

adjustments, performed similarly to each other and also similarly to their default versions.  Further 

advances may need to come from a different source.  For example, perhaps changing the way questions 

are asked may yield higher quality data which would, in turn, improve model performance. 

For naive users, default HB seems clearly to be the preferred method.  It requires virtually no tweaking, 

it is extremely simple to run and generates adequate results. 

If, however, the user is more advanced and either requires a segmentation as well as choice utilities, or 

is interested in building a parsimonious model (and the managerial insight that parsimony yields), LCC 

offers a viable alternative.   

A word of caution, however, regarding LCC models.  LCC models run fairly quickly if no Cfactors are 

included.  Including Cfactors increases computation substantially.  Models that may have taken a 

couple minutes to run might take a couple hours with Cfactors included.  If the modeler wishes to 

additionally model scale factor lamda, which can be done with the Latent Gold Choice Syntax Module, 

run times might increase to 10-12 hours.  In the commercial world, these run times may occasionally 

prove impractical. 
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We are an independent marketing research consulting firm 
dedicated to helping you make the most informed, insightful 

marketing decisions possible.  We specialize in technology, 
consumer, and new product research, and are well recognized 

for our State-of-the-Art Research techniques.   
 

Ultimately, we provide more than just technical expertise.   

We focus on developing pragmatic solutions that will have a 
positive impact on the profitability of our clients.   
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